The Temporality of Artificial Intelligence: Part 2

By Kathryn Hume, Jan 25, 2018

Our Future as Recent Past: The Case of Word Embeddings

In graduate school, I frequently had a jarring experience when I came home to visit my parents. I was in my late twenties, and was proud of the progress I’d made evolving into a more calm, confident, and grounded me. But the minute I stepped through my parents’ door, I was confronted with the reflection of a past version of myself. Logically, my family’s sense of my identity and personality was frozen in time: the last time they’d engaged with me on a day-to-day basis was when I was 18 and still lived at home. They’d anticipate my old habits, tiptoeing to avoid what they assumed would be a trigger for anxiety. Their behavior instilled doubt. I questioned whether the progress I assumed I’d made was just an illusion, and quickly fall back into old habits.

In fact, the discomfort arose from a time warp. I had progressed, I had grown, but my parents projected the past me onto the current me, and I regressed under the impact of their response. No man is an island. Our sense of self is determined not only by some internal beacon of identity, but also (for some, mostly) by the self we interpret ourselves to be given how others treat us and perceive us. Each interaction nudges us in some direction, which can be a regression back to the past or a progression into a collective future.

AI systems have the potential to create this same effect at scale across society. The shock we feel upon learning that algorithms automating job ads show higher-paying jobs to men rather than women, or recidivism-prediction tools place African-American males at higher risk than other races and classes, results from recapitulating issues we assume society has already advanced beyond. Sometimes we have progressed, and the tools are simply reflections for the real-world prejudices of yore; sometimes we haven’t progressed as much as we’d like to pretend, and the tools are barometers for the hard work required to make the world a world we want to live in.

Consider this research about a popular natural language processing (NLP) technique called word embeddings by Bolukbasi and others in 2016.2

The essence of NLP is to to make human talk (grey, messy, laden with doubts and nuances and sarcasm and local dialectics and…) more like machine talk (black and white 1s and 0s). Historically, NLP practitioners did this by breaking down language into different parts and using those parts as entities in a system.

Tree graphs parsing language into parts, inspired by linguist Noam Chomsky.

Naturally, this didn’t get us as far as we’d hoped. With the rise of big data in the 2000s, many in the NLP community adopted a new approach based on statistics. Instead of teasing out structure in language with trees, they used massive processing power to find repeated patterns across millions of example sentences. If two words (or three, or four, or the general case, n) appeared multiple times in many different sentences, programmers assumed the statistical significance of that word pair conferred semantic meaning. Progress was made, but this n-gram technique failed to capture long-term, hierarchical relationships in language: how words at the end of a sentence or paragraph inflect the meaning of the beginning, how context inflects meaning, how other nuances make language different from a series of transactions at a retail store.

Word embeddings, made popular in 2013 with a Google technique called word2vec, use a vector, a string of numbers pointing in some direction in an N-dimensional space3, to capture (more of) the nuances of contextual and long-term dependencies (the 6589th number in the string, inflected in the 713th dimension, captures the potential relationship between a dangling participle and the subject of the sentence with 69% accuracy). This conceptual shift is powerful: instead of forcing simplifying assumptions onto language, imposing arbitrary structure to make language digestible for computers, these embedding techniques accept that meaning is complex, and therefore must be processed with techniques that can harness and harvest that complexity. The embeddings make mathematical mappings that capture latent relationships our measly human minds may not be able to see. This has lead to breakthroughs in NLP, like the ability to automatically summarize text (albeit in a pretty rudimentary way…) or improve translation systems.

With great power, of course, comes great responsibility. To capture more of the inherent complexity in language, these new systems require lots of training data, enough to capture patterns versus one-off anomalies. We have that data, and it dates back into our recent – and not so recent – past. And as we excavate enough data to unlock the power of hierarchical and linked relationships, we can’t help but confront the lapsed values of our past.

Indeed, one powerful property of word embeddings is their ability to perform algebra that represents analogies. For example, if we input: “man is to woman as king is to X?” the computer will output: “queen!” Using embedding techniques, this operation is conducted by using a vector – a string of numbers mapped in space – as a proxy for analogy: if two vectors have the same length and point in the same direction, we consider the words at each pole semantically related.

Embeddings use vectors as a proxy for semantics and syntax.

Now, Bolukbasi and fellow researchers dug into this technique and found some relatively disturbing results.

It’s important we remember that the AI systems themselves are neutral, not evil. They’re just going through the time warp, capturing and reflecting past beliefs we had in our society that leave traces in our language. The problem is, if we are unreflective and only gauge the quality of our systems based on the accuracy of their output, we may create really accurate but really conservative or racist systems (remember Microsoft Tay?). We need to take a proactive stance to make sure we don’t regress back to old patterns we thought we’ve moved past. Our psychology is pliable, and it’s very easy for our identities to adapt to the reflections we’re confronted with in the digital and physical world.

Bolukbasi and his co-authors took an interesting, proactive approach to debiasing their system, which involved mapping the words associated with gender in two dimensions, where the X axis represented gender (girls to the left and boys to the right). Words associated with gender but that don’t stir sensitivities in society were mapped under the X axis (e.g., girl : sister :: boy : brother). Words that do stir sensitivities (e.g., girl : tanning :: boy : firepower) were forced to collapse down to the Y axis, stripping them of any gender association.

Their efforts show what mindfulness may look like in the context of algorithmic design. Just as we can’t run away from the inevitable thoughts and habits in our mind, given that they arise from our past experience, the stuff that shapes our minds to make us who we are, so too we can’t run away from the past actions of our selves and our society. It doesn’t help our collective society to blame the technology as evil, just as it doesn’t help any individual to repress negative emotions. We are empowered when we acknowledge them for what they are, and proactively take steps to silence and harness them so they don’t keep perpetuating in the future. This level of awareness is required for us to make sure AI is actually a progressive, futuristic technology, not one that traps us in the unfortunate patterns of our collective past.


This is one narrow example of the ethical and epistemological issues created by AI. In a future blog post in this series, I’ll explore how reinforcement learning frameworks – in particular contextual bandit algorithms – shape and constrain the data collected to train their systems, often in a way that mirrors the choices and constraints we face when we make decisions in real life.

Originally published in Quam Proxime. Learn more at

  1. This is one of many research papers on the topic. FAT ML is a growing community focused on fairness, accountability, and transparency in machine learning. The brilliant Joanna Bryson has written articles about bias in NLP systems. Cynthia Dwork and Toni Pitassi are focusing more on bias (though still do great work on differential privacy). Blaise Aguera y Arcas’ research group at Google thinks deeply about ethics and policy and recently published an article debunking the use of physiognomy to predict criminality. My colleague Tyler Schnoebelen recently gave a talk on ethical AI product design at Wrangle. The list goes on.

  2. My former colleague Hilary Mason loved thinking about the different ways we imagine spaces of 5 dimensions or greater.

About the author

Author photo

Kathryn Hume is VP Product & Strategy at, a SaaS startup applying AI to a unique combination of social, behavioral, and enterprise transaction data to help large B2C businesses optimize customer engagement. Alongside her work at, she is a Venture Partner at ffVC, a seed- and early-stage technology venture capital firm, where she advises early-stage artificial intelligence companies and sources deal flow. While at Fast Forward Labs, Kathryn helped Fortune 500 companies accelerate their machine learning and data science capabilities. Prior to that, she was a leader in Intapp’s Risk Practice, focused on data privacy, security, and compliance. A widely respected speaker and writer on AI, Kathryn excels at communicating how AI and machine learning technologies work in plain language. Kathryn has given lectures and taught courses on the intersections of technology, ethics, law, society at Harvard Business School, Stanford, the MIT Media Lab, and the University of Calgary Faculty of Law. She speaks seven languages, and holds a PhD in comparative literature from Stanford University and a BA in mathematics from the University of Chicago.


2018 Analytics Predictions and Priorities

A look at the year ahead in the world of analytics

Get Your Copy of the report »

Unbiased Actionable Insights

Accelerate your organization’s journey to analytics maturity

Get the data sheet to learn how the Research & Advisory Network advances analytics capabilities and improves performance.

Download data sheet »

Become a RAN Client

Get answers to your toughest analytics questions with IIA's Research & Advisory Network.